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COMPOUND SYSTEMS USING SCALAR THEORY OF 
DIFFRACTION: AN ENGINEERING TOOL FOR OPTICAL 
DESIGN AND OPTOMETRY

1. Introduction
The purpose of this paper is not to develop a 
geometrical theory of diffraction as done by 
Keller and others [1-3] but to define a useful 
tool in analogy with the compound system 
in geometrical theory. We will start at the 
beginning from scalar theory of diffraction and 
aim at defining such a tool for easily analyzing 
and designing optical systems in the framework 
of scalar theory of diffraction. The optical 
behavior of systems including several diffractive 
optical elements is more visible and easier to 
analyze if all these elements are combined 
into one compound system. As a consequence, 
the synthesis of diffractive systems satisfying 
predefined constraints becomes easier if such 
a compound system exists in the framework 
of scalar theory of diffraction. Moreover, this 
compound system can be extended to optical 
applications involving phenomena analogous 
to diffraction in mathematical terms. A typical 
application is wave propagation inside a 
single-mode fiber that is approximated by a 
dispersive medium of second order [4-5]. The 
compound system would be very useful, for 
example, in the synthesis of fiber components 
compensating chromatic dispersion. These 

components are key elements in high bit rate 
optical telecommunications (>10 Gbit/s). 
The elements of originality may be summarized 
as follows: The formalism of geometrical 
optics notably simplifies the analysis of image 
formation. However, this formalism is not 
rigorous and is based on a rough approximation, 
namely considering light propagating in straight 
lines (rays). The present work proposes a more 
rigorous formalism as well as an engineering 
tool offering the same simplicity of the analysis 
of image formation as in geometrical optics. It 
also applies on the system of human eye. Thus, 
optometrists and ophthalmologist could use 
the proposed engineering tool. This tool uses a 
lenses-based model.

After a brief overview on geometrical optics and 
on diffraction, we treat in the analysis section 
the Fresnel transform that is a powerful tool to 
model diffraction in the framework of scalar 
theory of diffraction. In the same section, we 
briefly cover the formalism of the compound 
system in the framework of the approximation 
of geometrical optics. Then we extend this 
formalism to scalar theory of diffraction and 
define the scalar-theory-based compound 
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system. In the next section we consider the 
example of the spherical diopter as one 
compound system. For illustration, we consider 
another example, namely the optical system 
of the human eye. To simplify the analysis of 
diffraction, we advance a lenses-based model 
of the Fresnel transform.
1.1. Geometrical optics
Geometrical optics refers to the simple ray 
tracing techniques that have been used for 
centuries [5,6]. Its basic postulates include the 
following: (1) The wave direction is specified by 
the normal to the equiphase planes (“rays”) (2) 
Rays travel in straight lines in a homogeneous 
medium (3) Power in a bundle of rays is 
conserved. (4) Reflection and refraction obey 
Snell-Descarte’s law.
Given an object and an optical instrument, 
geometric optics cannot offer a full 
interpretation of the formation of its image 
in an arbitrary location. In addition to the 
geometrical aberrations, this technique faces 
a limit when the phenomenon of diffraction 
occurs. In this paper, we have the intention 
to overcome these limitations while profiting 
from the formalism of geometrical optics based 
compound system.
1.2. Diffraction
Grimaldi carried out a simple, but fundamental, 
experiment in which he illuminated an aperture 
in an opaque screen with a light source and 
observed the intensity across a plane at some 
distance behind the screen [8]. Grimaldi 
observed that the transition from light to 
shadow is gradual rather than abrupt whereas 
according to the corpuscular theory, the shadow 
behind the screen should be well defined with 
sharp borders. We should admit that the source 
used was mediocre and thus hindered Grimaldi 
from observing the presence of light and dark 
fringes in the geometrical shadow. This leads 
us to excuse the geometro-opticiens for not 
discovering diffraction sooner.
Despite Newton’s support of the corpuscular 
theory [9] (He believed that the light 
propagation is a movement of corpuscles that 

respects the rules of mechanics and notably 
that of the universal gravitation), Huygens 
advanced the ondulatory theory (wave 
theory) based on Grimaldi’s observations. He 
explained Grimaldi’s observation by a purely 
intuitive postulation, in which he regarded 
light propagation as an incessant creation of 
elementary spherical light sources [10].
Like Huygens, Young, who discovered 
interference [11], supported the ondulatory 
theory. His belief in the analogy between light 
and sound leads him to state that light vibration 
is longitudinal [12]. The famous A. Fresnel was 
of the same opinion. However he considered 
that Huygens’ postulation did not explain the 
non-existence of waves, that have the same 
specifications, propagating backwards. He 
combined Huygens’ principle of the “envelope” 
building, with the interference principle of 
Young and, for the purpose of putting forward a 
coherent theory, he made some supplementary 
hypotheses on the amplitude and phase of 
the new elementary waves. At the end of the 
XIXth century, G. Kirchhoff gave a deeper 
mathematical basis to the diffraction theory 
introduced by Huygens and Fresnel, and 
considered Fresnel’s hypothesis as a logical 
consequence of the ondulatory nature of light. 
Kirchhoff’s work was subjected a few years 
later to criticisms made by Sommerfeld who 
considered the Kirchhoff formulation as a first 
approximation. He advanced with Rayleigh 
what was later called the “Rayleigh-Sommerfeld 
diffraction theory”.

2. Analysis
The Rayleigh - Sommerfeld diffraction 
theory treats the propagation of light as a 
scalar phenomenon and thus neglect its 
electromagnetic nature: the electromagnetic 
field must be characterized by its two 
components, the electric and the magnetic 
field, which are coupled by the Maxwell’s 
equations. In the scalar approach we consider 
only one transverse component of the field. 
This approximation is valid, however, if the 
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diffracting object is large compared with the 
wavelength of light, if the observation distance 
is sufficiently large, and if the angles involved 
are small enough to guarantee that the axial 
field components can be neglected. Widely used 
approaches include the so-called Fresnel and 
Fraunhofer approximations [13], which describe 
the diffraction patterns in the Fresnel region 
and in the far field of the aperture, respectively.

Figure 1: Fresnel and Fourier transforms: a) The 
diffraction field observed in the Fresnel zone at a 
distance z is expressed by the Fresnel transform g(x,z). 
b) The Fourier Transform G(x) of a object g(x)=g(x,0) 
can be implemented by two identical convergent lenses 
separated by the focal length.

2.1. Fresnel transform
In this work, we opt for the Fresnel 
approximation given that we are interested in 
relatively far finite distances with respect to the 
object features. Moreover for brevity of notation, 
the analysis is limited to the one-dimensional 
consideration. Hence, the diffracted field g(x,z) 
observed at a distance z (fig. 1a) is expressed by 
the Fresnel transform [13], as follows:    
                                                                                 (1)

where g(x)=g(x,0) is the initial field,  is the 
wavelength in the wavelength in vacuum and   
* denotes convolution. The initial field is also 
referred to as the object (a complex object). It 
might be an aperture function, a diffractive 
mask, an analog or digital hologram, etc. The 
Fresnel kernel is expressed as follows: 

    (2)

Figure 2: Another way to respectively implement the 
Fresnel and Fourier transforms of figure 1: a) using two 
divergent lenses of focal length –z and a convergent lens 
of focal length z. b) using one focal length of focal length 
z.

For a wave propagating in a medium with a 
refraction index n, the wavelength  should 
be replaced by /n in equations (1) and (2). 
For brevity of notation, the constant term 
of propagation  ( )λπ /2exp zi  and the factor 

zi λπ /)4/exp(−   will be ignored. If we move to 
the Fourier plane, equation (1) becomes [14]:
      
     (3)
where G(u,z) is the Fourier transform of the 
diffracted field g(x,z) and G(u) is the Fourier 
transform of the initial field : g(x,0)=g(x).
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In addition to relation (1), the diffraction field 
observed at a distance z can be expressed by a 
Fourier Transform (FT): 
            (4)

This relation is known as the generalized 
diffraction equation or Collins equation [15]. 
After calculating the FT, the spatial frequency 
u’ is replaced by x/( z). The two quadratic 
terms inside and outside the Fourier 
Transform argument represent two identical 
divergent spherical waves with a radius z. As a 
consequence of relation (4), to strictly obtain a 
FT of the initial field we should neutralize these 
two spherical waves by using two identical 
convergent lenses with a focal length z (fig. 
1b). Moreover, we know that the FT can be 
implemented by a single spherical lens, where 
the object g(x) should be placed in its front focal 
plane [13]. The FT of this object is then observed 
in the back focal plane of the lens (fig. 2b). Thus, 
to obtain the Fresnel transform of g(x) we need 
two elements introducing the two quadratic 
terms of relation (4). This job can be done by 
two divergent spherical lenses (fig. 2a). This 
lenses-based model of the Fresnel transform, 
i.e of diffraction in the Fresnel regime, will be 
used to easily build compound systems using 
Gaussian formula analogously to geometrical 
optics.
2.2. Compound systems using geometrical optics
For simplicity of the study, we will analyze 
the concept of compound systems by means 
of a concrete simple example, namely the 
combination of two thin lenses in air. The 
generalization to more complex systems is 
straightforward.
Problems involving thin lenses in combination 
can be solved by successive application of the 
thin lens formulae. To calculate the position 
of the image formed by a system composed of 
two lenses, we can do it in two steps. We use the 
thin lens formula and calculate the position of 
the image formed by the first lens in isolation. 
We then consider this image as the object for 

the second lens to calculate the final image 
position. 
An alternative to model image formation in the 
frame work of geometrical optics approximation 
is to use the “paraxial ray propagator matrix” 
[16]. Two thin lenses in air are combined with 
a separation d as shown in Figure 3. Since the 
thickness of a thin lens is negligible, the lens 
matrixes of lens 1 and lens 2 are:

Figure 3: Optical setup including two lenses with focal 
lengths f1 and f2 separated by a distance d. Given g(x,0), 
we can obtain the output field g2(x,z3) by successively 
calculating of the diffractive field through the step (1) to 
(4).

The transfer matrix from lens 1 to lens 2 is: 
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So the system matrix of the two-lens compound 
is:    
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The anterior and posterior focal lengths f 
and f’ (locations of F and F’ in Figure 3) of the 
compound system are:    (8)

The location of the principal planes is 
determined by:        (9)
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The condition to obtain an image g2(x,z3) of the 
object g(x)=g(x,0) is indicated by the Gaussian 
formula :

For simplicity of calculation, we will suppose 
that this condition is valid for the rest of the 
analysis. The linear magnification m is then:

The linear magnification or transverse 
magnification is the ratio of the image size to 
the object size.
2.3. Compound systems using scalar theory of 
diffraction
Let us continue with the two-lens compound 
system of Figure 3. The objective is to 
determine the output diffraction field g2(x,z3) 
as a function of the input field g(x)=g(x,0) and 
the system parameters, namely f1, f2 and d. To 
simplify the task, we track the diffraction field 
from the input to the output by dividing the 
diffraction process into four successive steps: 
(1) to (4) as indicated in the Figure 3. This leads 
to calculating the intermediate fields g(x,z1), 
g1(x,0), g1(x,z2), g1(x,d) and g2(x,0). To avoid 
forbidding mathematical calculations by using 
the integral formulation of Fresnel diffraction 
(Eq. (1)), we prefer to use the lens based model 
of the Fresnel transform as illustrated in Figure 
2a. The task will be very easy.
Fresnel diffraction through the steps (1) to (4) is 
then modeled by using the model of Figure 2a 
to finally obtain the setup of Figure 4. The two 
initial lenses of Figure 3 are colored in dark gray 
in Figure 4, whereas the lenses involved by the 
lenses-based model of the Fresnel transform 
are colored in light gray. The gray lenses will be 
called initial or original lenses. The diffraction 
through step (1) involves 2 divergent spherical 
lenses with focal length –z1 and a convergent 
spherical lens with focal length z1. At the end of 
the path (1), light comes cross the first initial lens 

with focal length f1 before covering the second 
path (2). This path also involves three lenses. 
The first divergent lens is located just behind 
the first original lens. Thus we obtain three 
lenses placed side by side as indicated in the 
left hand side of Figure 4. The optical behavior 
of these three lenses vanishes if the power of 
the positive lens is equal to the absolute value 
of the sum of the powers of the negative lenses:

Let us choose z2 so that relation (12) is valid. 
These three lenses are then eliminated as 
indicated by a cross in Figure 4.
At the end of the path (2), we obtain two spherical 
lenses placed side by side (Figure 4). These two 
lenses can be replaced by a single lens with a 
power: Fc = -1/z2 +1 /(d-z2), i.e. with a focal 
length:   

Behind these two lenses, i.e. behind the 
compound lens with focal length fc, we obtain 
the field g’(x) of Figure 4:

with

The minus sign in the term g(-x1,0) comes 
from the succession of two Fourier transforms 
(telescope setup). The scale factor of relation 
(15) comes from the fact that the two Fourier 
transforms are undertaken with respect to two 
respective scale factors z1 and z2. For z1=z2, 
except for two quadratic phase terms (14) we 
obtain a telescope system without amplification: 
x1=x (4f-setup).
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Equation (14) combined with relation (15) gives:

Let us continue by considering the steps (3) 
and (4). Similarly to the paths (1) and (2) let us 
suppose that the three lenses placed side by 
side on the right hand side of Figure 4 satisfy 
the following condition: 

We note that solving Eq (17) for z3 leads to Eq (9). 
We thus obtain the output field:

with

Finally, we obtain:

where the radius of divergence R is defined as 
follows:

and the scaling factor S is:  

By combining relations (12), (17) and (23), we note 
that the scaling factor S is nothing but the linear 
magnification m of relation (11): S=m.
By combining relations (12), (17) and (22), we 
obtain the following expression of the radius R:

Using relations (8), (9) and (24), we obtain after 
some algebra (Fig. 3):

Thus, the quadratic term ¸
¹
·

¨
©
§ 2exp x

R
j

λ
π  of Eq.

 (21) stands for a spherical wave starting from 
the posterior focal point F’ of the compound 
system. Thus implies that if the input is a plane 
wave, the output wave is spherical and it 
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Figure 4: Modeling of the system of Figure 3 by the lenses based Fresnel transform model (fig. 2a). The two 
initial lenses of Figure 3 are colored in dark gray, whereas the lenses involved by the lenses based model of the 
Fresnel transform are colored in light gray.
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converges to the focal Point F’. Then, it continues 
as divergent spherical wave so that if we observe 
the field at a distance z3, we then obtain the 
phase term:      In this case, the second 

term g(x/S) of Eq (21) is equal to 1 (input plane 
wave). This is in total agreement with 
geometrical optics.
Another interesting case is the situation of 
z3=h’. We note that the distances of Figure 3 
may be negative. The case z3=h’ means that the 
observation plane is identical to the posterior 
principle plane H’ of the compound system. It is 
expected, from geometrical optics, to obtain a 
spherical wave converging towards (or diverging 
from) the focal point F’ if the input is a plane 
wave. According to Eq.(25), our special case 
means that z3=-f’. Relation (22) implies that the 
observed field is ,  which

corresponds to a spherical wave focusing on 
(or starting from) F’. This second special case is 
also in total agreement with geometrical optics.

2.4. A scalar theory based compound system
The previous analysis leads to the definition 
of a scalar theory system generalizing the 
geometrical optics based compound system. 
Figure 5 illustrates how the scalar theory based 
compound system works. Let us consider an 
input field g(x,0) propagating and coming across 
two lenses separated by a distance d. We first 
determine the focal length f of the compound 
system and the positions h and h’ of the principal 
planes by using respectively relation (8) and (9). 
To obtain the expression of the output field 
g’(x,z’), the application of the scalar theory of 
diffraction consists in successively considering 
diffraction until the first lens (using relation (1)), 
the transmittance of the first lens, diffraction 
between both lenses, the transmittance of the 
second lens and finally diffraction behind the 
second system. To avoid this complexity, an 
equivalent system replaces the two separated 
lenses by a single one having the posterior focal 
length f’. In other words, the lenses are replaced 
by a system with a transmittance:
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Thus we only need to calculate the diffraction 
field g(x,z) just before the compound system 
(using relation (1)). We then multiply the result 
by the transmittance of this system to obtain 
g’(x,0). Finally, we reconsider diffraction along 
the distance z’ to obtain the output field g’(x,z’). 
It is worth noting that the distance between the 
planes H and H’ of Figure 5 becomes without 
any optical effect.
The inverse transform (starting from g’(x,z’) to 
calculate g(x)) is also easy to undertake using 
the diffractive compound system. Therefore, 
the scalar theory based compound system is, 
in particular, very useful for the synthesis of 
diffractive elements satisfying constraints in 
the output plane. For example, using iterative 
methods such as the Gerchberg-Saxton 
algorithm [17,18], we iteratively modify the 
diffractive object g(x,0) so that its replay field, 
g’(x,z’), at the output of Figure 5 converges 
towards a form satisfying the constraints 
imposed by the application. 
Aberrations can also be easily treated. If, for 
example, the first lens suffers from optical 
aberrations (Figure 5), the analysis remains valid 
and the wavefront aberration w(x) (expressed in 
meter or micron) can be taken into account. In 

this case, the diffraction field g(x,z) just before 
the compound system should be calculated 
in two steps (using relation (1) twice : two 
distances that are z - h then h) separated by a 
multiplication by a(x) (Figure 5). We note that the 
field a(x) caused by the presence of aberrations 
is linked to the wavefront aberration w(x) as 
follows:       
      (26) 

For simplicity, we considered a system 
composed of two separated spherical lenses in 
the present analysis. Generalization to other 
systems is straightforward.
3. Example: spherical diopter
The spherical diopter can be modeled by 
the scalar theory based compound system. 
The principal planes H and H’ of this system 
are superimposed and the nodal points are 
identical to the center of curvature C (Figure 
6). Given that the field at the output propagates 
in a medium with a refraction index n2, the 
transmittance of the system is then 
 
                        where  is the wavelength in 

vacuum.
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                        . Finally, g’(x,z’) is obtained by 
applying relation (1) where the wavelength  is 
replaced by /n2. For the special case where 
the incident wave is a spherical wave starting 
from the focal point F (Figure 6), according 
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to geometrical optics, it is expected that the 
output wave be a plane wave (image at infinity). 
According to scalar theory, the diffraction field 
g(x,z) just before the spherical diopter is a 
spherical wave field expressed by the following 

quadratic phase term:                              Just 

after the spherical surface separating the two 
media (n1 and n2), we obtain g’(x,0) merely 
by a multiplication of this phase term by the 
transmittance of the system yielding: 

                                                                 Bearing in 

mind that the anterior and posterior focal 
lengths of a spherical diopter are linked as 
follows: f’/n2=-f/n1, we obtain a plane wave: 
g’(x,0)= g’(x,z’)=1 (the propagation constant 
term  is neglected as mention in section 2.1). 
This is in full agreement with geometrical 
optics.

4. Application: the system of the eye
The scalar theory based compound system 
is useful for many fields of applications. For 
example, contrary to geometrical optics it allows 
analyzing the wavefront aberrations at any 
position in space. This analysis can be done for 
complex systems. Moreover, the analysis of the 
effect of diffraction, including the effect of the 
finite pupil size, is one of the main advantages 
scalar theory based models of optical systems. 
One of the system for which the scalar theory 
based compound system is very useful is the 
system of the eye (Figure 7). As an example, we 
consider one simplified eye model, namely the 
Gullstrand’s simplified schematic eye [19-21]. 
Obviously, the reduced eye model or even other 
more complex models such as the schematic 
eye described by Emsley [22] can be also covered 
by the scalar theory based compound system. 
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Given an input field g(x,0), the diffraction field 
g(x,z) observed in the principal plane H (Figure 
7) is expressed by relation (1). Then, the field 
g’(x,0) in the plane H’ is obtained by multiplying  
g(x,z) by the transmittance of the system, 

namely                               . The pupil function and 
aberrations can also be taken into account. The 
diffraction field g’(x,z’) observed inside the eye 
at a distance z’ is obtained by applying relation 
(1) where the wavelength  is replaced by 
/n2. If, for example, one of the surfaces of the 
crystalline lens introduces aberrations (Figure 
7), then the aberration field a(x) (relation 
(26)) should be considered in the calculation 
of g’(x,z’). This allows us to study the effect 
of aberrations associated to the individual 
optical components of the systems of the eye. 
We note that it is easier to take into account 
the aberration information concerning the 
outer components of the system (example: 
anterior cornea surface) than that of the inner 
components (example: anterior crystalline lens 
surface).
Figure 7 shows the case of an emmetropic eye 
(F’ on the retina). The analysis is still valid if the 
eye is myopic (as pointed out in Figure 7, the 
focal point F’m is before the retina) or hyperopic. 
For an eye corrected with an ophthalmic or a 
contact lens or any other kind of correction, 
the scalar theory based compound system can 
be used. Two solutions are possible. First, we 
can calculate a compound system including 
the correction. The second solution consists 
in separately considering the correction 
element and the system of the eye yielding to 
an additional use of relation (1). This relation is 
then applied three times instead of twice. It is 
worth noting that aberrations associated to the 
correction (ophthalmic lens, intraocular lens, 
laser surgery, cornea implant, …) can be easily 
integrated in the analysis. 
5. Application: propagation in a dispersive 
optical fiber
The nonlinear Schrödinger equation governs 
the propagation of the optical pulses inside 

single-mode fibers [4]. For pulses larger than 1 
ps, this equation is simplified as follows:

      (27)
where A is the slowly varying complex amplitude 
of the pulse envelope,  is the absorption 
coefficient,  is the nonlinearity coefficient, 

2 is the second order dispersion coefficient, 
z is the observation distance and the time T is 
measured in a frame of reference moving with 
the pulse at the group velocity vg (T=t-z/vg). 
If neglect nonlinearity ( =0) and normalize 
the complex amplitude and the time scale we     
obtain:                                                             (28)

where g(z, ) is the normalized amplitude (P0 : 
the peak power of the incident pulse):  

       (29) 
and =T/T0 is the normalized time (T0: pulse 
width). The Fourier transform of the solution of 
the differential equation (28) is:
      
      (30)

Equation (30)  is similar to the diffraction 
equation (3) and becomes identical to 
it when 2 is replaced by - /2π . To 
compensate the dispersion effect cause by 
wave propagation inside the fiber, additional 
optical elements (Mach-Zender Modulators, 
chirped fiber gratings, …) are introduced in 
the telecommunications chain. It is desirable 
that all these components are combined with 
the fiber itself in one compound system as we 
did with diffractive systems. Our analysis of 
diffraction systems in the previous sections 
can be straightforwardly extended to this 
application. Because the issue requires however 
some elaboration, it will be detailed in a future 
work.
6. Discussion
Given a combination of several optical 
components, it is useful to handle them as a single 
system having a determinable transmittance 
(or reflectance) function. Geometrical optics 
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offers this possibility by using for instance the 
Gauss’ method. Since this theory does not take 
into account the wave character of light, scalar 
theory of diffraction offers a more accurate tool 
of analysis. For example, with the latter theory 
we can analyze higher diffraction orders.
We have shown that the definition of a compound 
system is possible in the framework of scalar 
theory. It allows to determine the output 
diffraction field at any distance z’ as a function 
of the input field and its position in space z. The 
cost of this calculation is the application of the 
Fresnel transform twice and a multiplication by 
the transmittance (or reflectance) of the system. 
It also allows taking into account aberrations 
yielding however to additional calculations 
(generally an additional Fresnel transform). It 
also allows to easily calculate the Point Spread 
Function, the Optical Transfer Function and 
the Modulation Transfer Function which are 
very useful functions quantifying the optical 
behavior of optical systems [23] including the 
system of the human eye. Moreover, the scalar 
theory based compound system simplifies the 
calculation of optical performance criteria 
and image quality criteria such as the Optical 
Transfer Error [24].
In perspectives, the approach of compound 
systems based on scalar theory of diffraction 
will be applied to the synthesis of fiber 
components for use in high bit rate optical 
telecommunications.
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